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LETTER TO THE EDITOR 

Information length and localization in one dimension 

Imre Varga and Jhos Pipek 
Quantum Theory Group, Institute of Physics, Technical Universitv of Budapest. H- 
1521 Budapest, Hungary 

Received 14 DeQmber 1993 

Abstract. The scaling properties of the wavefunctions of the onedimensional Anderson model 
are analysed for finite samples. The stat- have been characterized using a new form of the 
information, or entropic, length, and compared with analytical mults obtaired by assuming an 
exponentid envelope function. A perfect agreement has already been obtained for systems of 
103-10' sites over a very wide range of disorder parameter lo-' c W c I @ .  Implications for 
higher dimensions arc also presented. 

The numerical detection of exponential localization in finite, random systems is not a trivial 
task, especially in the weakdisorder limit when the localization length of the eigenstates is 
expected to be larger than the system size. This may be a problem even in one dimension 
(ID), where rigorous results [I] affirm complete exponential localization for any strength of 
disorder. 

The model under consideration can be described by a tight-binding Schrodinger equation 
in the nearest-neighbour approximation as 

U ~ + I  + u"-I+ Vnun = E U ,  (1) 

where V, are independent random variables with uniform distribution over the 
[- W/2, .  . W/2] interval, E is the eigenenergy and U, is the amplitude of the eigenfunction 
on site n. The wavefunctions are expected to behave asymptotically up to oscillations as 

un - exp(--yn) (2) 

where y = <-I is the inverse localization length or Lyapunov exponent that may be 
numerically obtained as [ 11 

The exponential localization has been corroborated by the one-parameter scaling theory 
[Z]. This was built essentially on the basis of the Thouless number [3] that is related to 
the dimensionless conductance [4]. Inspired by that scaling law in a recent paper Casati 
et ul [5] have introduced the concept of informtion loculizufion length [6] and investigated 
numerically the possible scaling properties of the eigenstates themselves. Their study has 
also been motivated by previous results obtaining a scaling law for an analogous model in 
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quantum chaos, the kicked rotator [7], as well as for band random matrices [SI using the 
same concept. 

The main idea of [SI is to take a suitable ensemble of eigenstates and to calculate the 
information length as 

,%(E, N ,  W = e x p p  - S d  (4) 

where N stands for the system size; W describes the strength of disorder. The index C 
is used to label ,9 in order to refer to the definition of Casati er al. 7 is the averaged 
information entropy, 

of normalized eigenstates in a window around energy E for different realizations of the 
random potential. The Snr in (1) stands for the entropy of a reference state 

U, - sin(9n) cos 9 = E/2 .  (6) 

This wavefunction is the exact solution o f  (1) in the absence of disorder (W = 0)  with ug = 0 
and U, = 1. A straightforward calculation yields the asymptotic form S,r(N) + ln(2N) - 1 
as N + CO. We have to indicate that the particular choice of S,f in (4) involves a delicate 
problem, that we wish to discuss below. 

The principal aim of definition (4) is that Bc should give the portion of the sites 
significantly populated by the eigenstates compared to that of the reference state (6). It 
is clear that with the increase of the system size N we expect exp(S) a N in the case of 
extended states and exp(S) -+ constant for localized states. Note, that since for large N ,  
exp(-S,f) - c f N ,  its role is normalization. 

Casati er al have numerically established the scaling law (51 

(7) 

with C E 1. has been calculated as tm = l / y ~  (cf. (3)) for strong disorder ( l / y ~  < N ) .  
For weak disorder ( l / y ~  > N )  instead of numerically calculating the Lyapunov exponent 
the authors of [SI used & given by the perturbative calculation [9]. They have found, 
however, no theoretical explanation for (7). We would like to point out that the approach 
of Casati er al [SI depends on the supposition that in (7) pc c I i.e. 7 < SE[. There 
is, however, no rigorous proof for these relations. This is particularly crucial in the weak- 
localization limit JV + 0, Bc Y 1. Indeed, in actual numerical calculations for small 
ensembles we have found that, occasionally, BC > 1 as well. We could prove, however, 
that 7 < S,f(N) for sufficiently large ensembles. The proof is based on the idea that any 
small perturbation (Qk = Q,(l +A,)], Tn = 0 of an arbitrary probability distribution {Q.) 
leads to 3 < S, where 3 is an average over an infinite number of realizations of A,. As a 
byproduct, it is also evident that for the calculation of pc, Sxf = S , d ( N )  has to be applied 
instead of using the asymptotic form ln(2N) - 1. 

Furthermore, as we will show later, for finite systems the functional form of the scaling 
law (7) does not seem to be valid in the weak-localization limit (W + 0). This is mainly 
due to the improper application of the perturbative treatment, 
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In this letter we propose a new form of 0 for resolving the above mentioned difficulties 
and appropriately handling the W + 0 limit. We will demonstrate that OUT p function 
is, apart from showing special scaling properties, capable of proving the exponential 
localization in one dimension. 

On the basis of our recently introduced classification scheme [IO], the information 
entropy (5) of any general, normalized, non-negative lattice distribution can be split as a 
sum of two terms 

S = S,, + In D (8 )  

where D is the delocalization measure [ 1 I] or participation number 1121 

and S,, is the stnrcrural entropy of the distribution. The parameter D is widely used in the 
literature giving the number of sites the eigeustate extends to. Therefore it is bounded as 
1 < D < N .  Using D we may introduce a normalized quantity q ,  the spatial filling factor 
or participation ratio as 

The structural entropy in equation (8) has been shown [IO] to be non-negative with bounds 

(11) 

Using the quantities discussed above we now propose an alternative form of the 

0 < S,, < -1nq. 

normalized information length of an eigenstate as 

p = (1jNfexpS (12) 

which, using expressions (8), (9) and (IO) becomes 

B = q exp(S,t). (13) 

Due to the well known properties 0 < S < In N the following reshictions are imposed on p 

o c p < 1 .  (14) 

These bounds are valid for each state separately, whereas & < 1 can only be guaranteed 
after an appropriate averaging process. Obviously, an eigenstate expanding uniformly over 
the whole system will have U: = 1 j N  so that p = 1. In the other extreme, for localized 
states D - 1 and S,, Y 0, in a finite system one obtains 6 Y I j N .  Returning now to the 
Anderson model (1) with non-zero disorder W # 0, one expects according to (2) and (6) 
the charge distribution of the solution of the form 

where f is a slowly varying envelope function due to the presence of the perturbing random 
potential. Obviously, in our case function f is expected to take an exponential form 
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f ( p )  = exp(-p). The value of a is roughly 9 defined in (6). Further specification of a 
is needless for our purposes; the only restriction we impose is LY >> 1,” that is always 
fulfilled except very close to the band edges. As we have shown [10,13] for multiplicative 
superstructures of the form (15) we get 

Inq= lnqf  + I n q a  (16) 

and 

Ss, = sir + s9, (17) 

where the upper index f stands for the values obtained for the charge distribution f ( y n )  
alone and upper index 0 indicates those obtained for sin*(an). It is possible to show that 
(independently of a) 

q0=2/3  $ m = 1 n 3 - l .  (18) 

Using (16) and (17) as well as definition (13) we get 

B = Bf Bo (19) 

where 60 = qo exp(& N 0.7357. In the limit of vanishing disorder W -+ 0 one expects 
y + 0, f ( p )  4 1. For such a dishibution, using (5). (8) and (9) q f  -+ 1 and Sf, -+ 0 
therefore pr -+ I. For strong disorder on the other hand y >> 1 which yields D N 1, 
therefore in finite systems q f  2 1 / N  and SA N 0 resulting in flf N 1/N.  

The role of pa in (19) is similar to the factor exp(Sref) in (4) introduced by Casati er al 
[SI; however, BO is a constant independent of the system size N ,  and its derivation is based 
on the separation of the wavefunction into an envelope and a strongly oscillating part (15). 

Before performing the numerical simulation we still have to give the explicit q f  and 
Sf, values as a function of y .  In [IO] the general form of q f ( z )  and SA(.?) functions with 
z = y N  = N/C is given for arbitrary dimensionality; these have been calculated applying a 
continuous lattice approximation, i.e. the relevant scale ( y - ’ )  was assumed to extend over 
many lattice spacings. It has been shown in [lo] that in one dimension 

where functions F ( z ) ,  G ( z )  and H ( z )  are defined as 
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Inserting the general functions given in expressions (21) into (20) one obtains for B, in the 
continuous l i t  

It is straightforward to calculate the &(z) function for any envelope shape f ( p ) .  For 
exponential decay, f ( p )  = exp(-p), we get 

expz - 1 
expz - 1 
z expz A p ( Z )  = 

Expressions (22) and (23) are the principal results of this letter showing the scaling property 
of ,9/ provided that a reasonable definition for the f@) decay function (15) exists. 

Let us turn now to the asymptotic properties of &(z). In the case of strong localization 
z + 00 (N >> g), since both F ( m )  and H(m) are finite for most of the practical cases, 
from the general expression (22) one gets 

(24) t 
N 

as expected. In the other limit of delocalization as z -+ 0 (e.g. + cc keeping N fixed) 
we found that the asymptotic form of &(z)  is governed by the short-range properties of the 
form function f ( p ) ,  i.e. it depends on the derivative of f ( p )  at the origin p = 0. Namely, 
if f’(0) # 0 then 

B,(Z) - z-l - - 

1 2  B(z) Y 1 - -z 24 

while for a Gaussian form function, e.g. where f’(0) = 0, the first non-vanishing term is 
of the order of z4. 

Instead of the &(z), after [51, we define 

in order to emphasize both the localized and delocalized limits. In our numerical simulation 
we have compared (26) for exponential form function (22) with the calculated 

y = -  BI 
1 - B /  

values, where p, is defined here as 

(28) 
1 -  - 

Bo Bj = --4 exp&. 

As 0 < & < 1 is hue already for individual wavefunctions it is not necessary to perform 
averaging over states taken from an energy window; however, at a certain energy we 
calculate the statistical means and &, over many realizations of the random potential. 
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Figure 1. The log-log plot of the localization Flgurc 2. Scaling of the enlropic length versus the 
length versus slrength of disorder using lhe numerical localization length using In y = In(p/(I - p ) )  versus 
simulation. The characteristic relations are also In(c/N). Solid symbols represent lhe results of our 
denoted. numerical simulation. The dashed line stands for the 

scaling law found numerically by Casati et al [SI. Note 
the change in the slope of the continuous curve at 
around 2 N. The continuous cnwe is our analytical 
result (see (23) and (26)). 

The eigenvectors in our simulation were obtained by the iteration of the recurrence 
relation of (1) with initial conditions uo = 0 and ut = I. In all of the presented results 
the length of the system was N = lo4 and the number of samples used for averaging was 
M = lo3. The energy was fixed to E = 0.1. The localization length was obtained as 

( ( E )  = P(W1 (29) 

where y(E) was calculated according to (3). In a finite lattice two relevant length scales 
characterize the system: the chain length N and the lattice spacing (a = 1). The relation 
of e with respect to these length scales is essential in such types of calculation. 

In figure I we have plotted the localization length as a function of the strength of 
disorder ranging from W = up to W = lo4. Our numerical calculations confirm the 
theoretically expected behaviour e-’ - IQ W for large disorder. In the case of vanishing 
disorder W -+ 0 perturbation theory predicts (-I - WIZ in the thermodynamic limit N -+ CO 

[9]. This consideration, however, fails for finite N as one can see in the low-W part of 
figure 1, where we have found numerically (-’ - W. The figure clearly shows that 
this finite-size behaviour becomes relevant for such disorder values where the localization 
length is comparable to or greater than the system size. It seems that the behaviour of the 
wavefunction on intermediate length scales is governed by a different characteristic length 
ti. As is shown in figure 2 on this latter scale, exponential localization can also be detected. 

In figure 2 we have compared the Bc of Casati et al and our numerical & and theoretical 
peXp as a function of (IN. The results of the simulation are very close to the solid line 
representing (23). It is evidently more apparent to plot y as a function of BIN in a 
log-log plot that is given in figure 2. The results of the simulation follow the curve for 
exponential localization. The deviation for In((/N) < -9 is present because the value 
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Figure 3. The StTUctural enlropy versus filling factor in a semi-log plot. The filled symbols 
represent our simulation, while the solid line stands for the relation assuming acharge disuibution 
of the form of (15) 

of the localization length becomes comparable to the lattice constant as W --f CO i.e. we 
obtain In y + -In N .  Both our analytical and numerical results confirm the expected 
high-disorder behaviour of In y Y In ,3 - In (see e.g. (24)), as well as the low-disorder 
behaviour of Iny E In(1 - ,3) - 21116 (see e.g. (25)). For strong disorder we observe 
perfect agreement with the scaling law set up by Casati et al [5 ]  in (7). Our analytical 
results (23) confirm this scaling law 

InBexp(z) -+ - Inz  + 1 (30) 

in the limit of strong localization z = N j t  + M. 
For weak disorder, however, figure 2 shows a considerable disagreement between our 

results and that of [5 ] .  This is easy to understand considering that for this regime Casati er al 
have used the predictions of the perturbative calculation valid in the thermodynamic limit. 
As we pointed out earlier this approach needs a careful analysis. They compare quantities y 
and cw where y is calculated from wavefunctions characterized by the intermediate length 
scale ti. On the other hand calculating the 5 according to (3) and (29) we obtain an almost 
perfect agreement between the numerical simulation and our analytical expressions for the 
exponential form function. This shows that, apart from the exponential long-range behaviour 
for tw < N ,  in the intermediate range (tw > N )  the same kind of decay was found with a 
different scale constant ti, as well. 

Just to have a feeling for how well the charge distribution of the form of (IS) describes 
the average properties of the wavefunctions in the Anderson model, in figure 3 we have 
plotted Fs,, as a function of & We have compared the results of the simulation with analytical 
results obtained assuming the form of (15). A satisfactory agreement can be established 
between the numerical and analytical results especially for low and high disorder. The 
charge distribution is clearly not of pure exponential form, but is a plane wave modulated 
by an exponential envelope. 

We would like to note that especially for weak disorder, the exponential localization, 
apart from fluctuations and oscillations, is still strictly true and visible using our construction 
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of the B function, at least up to localization lengths several times larger than the size of 
the system. We believe that after a proper definition of the localization length, a similar 
procedure could also clearly show the expected exponential localization in two dimensions. 
Results along these lines are to be published in a subsequent paper. 

Financial support from Orsz6gos Tudomiinyos Kutatasi Alap (OTKA), grant Nos 517/1991 
and 17283/1993, is gratefully acknowledged. 
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